
Windows Kernel Fuzzing
for Beginners

Ben Nagy

 ohai.

- Not oldsk00l. Just old.

- ~ 5 weeks experience with Windows Kernel

- > 5 years experience with Fuzzing

- Hate all Technology

- Ruby and Drinking Make the Pain Go Away

Disclaimer:
I am aware of the prevailing opinion that fuzzing talks

without bugs suck, by definition. I do not have any bugs. Even

if I did have bugs, I wouldn’t tell you. There are no bugs.

There are, however, otters and buff Russian men of dubious

sexuality. Also, many red boxes. You have been warned.

Secret Fuzzing Wisdoms

• Select a Good Target

• Acquire Essential Knowledge

• Apply Fuzzing Canon - DIGS

– How do we Deliver

– How do we Instrument

– How do we Generate

– How does that Scale

Secret Fuzzing Wisdoms

• Delivery, Instrumentation, Generation
– Gotta keep em separated!

– Please stop writing heavily coupled tools, kthx

• A good toolchain allows rapid retargeting
– Start fuzzing with a stupid generator

– Cold cores find no bugs!

Target Selection

n_bugs = p_bug * n_tests

• p_bug / testing speed is inherently target specific

• Can tune the equation

– Better (possibly slower) Generators

– More Scale

– Rapid Tooling (lead time counts!)

– Better Samples

– Pre Fuzzing Toolchain

p_bug++

• Feedback Driven Fuzzing
– Via code coverage, success rate or some other metric

– Eg SAGE, bunny, EFS, Flayer

– PRO - Awesome, super elite, finds bugs dumb fuzzers will never hit

– CON – Slow, difficult to write, poor Windows support

• Fault Injection / deeply instrumented fuzzing
– Inject bad data close to code being attacked

– PRO - vastly simplifies delivery

– CON - need to then check reachability

• Corpus Distillation
– Low effort, high reward technique

– Need a way to measure coverage (tricky for kernel stuff)

Target Selection

n_bugs = p_bug * n_tests

• More broadly, n_bugs isn’t interesting

• Are there USEFUL bugs in there?

• If there are, can we locate them

– Bug Chaff

– Post Fuzzing Toolchain

Target Selection

n_bugs = p_bug * n_tests

• Bug Utility is SUBJECTIVE

• Sell? Use? Fix? Disclose?

• Whatever our utility metric, can we REALISE VALUE
– Will it provide USEFUL CAPABILITY?

– Is it RELIABLY exploitable?

– Will anyone buy it anyway?

– Is it worth fixing?

– Will it bring us fame and imply great sexual prowess?

Windows Kernel, Simplified

• Featuring “Barry the Kernel Otter”

• Some stuff is completely missing or wrong

• All of it is greatly simplified

• Real resources abound!

– MSDN (new layout / navigation is awesome)

– Anything by j00ru, Alex Ionescu, Tarjei Mandt

– Anything by Russinovich / Solomon / Probert

– “CRK” is an academic course, freely downloadable

– “WRK” is a full windows kernel source tree, plus build tools

“NT Executive”

Userland

ntdll

kernel32

Dragons

Hardware

“NT Executive”

Userland

ntdll

kernel32

Dragons

Hardware

1. Setup syscall args

2. syscall number in eax

3. int2e / sysenter / syscall

(“context switch”)

4. Lookup syscall in SSDT

5. Dispatch to correct driver

“NT Executive”

IO USER GDI

Userland

ntdll

kernel32

Hardware

Other Complicated Stuff

Dragons

“NT Executive”

IO USER GDI

Drivers

Are

Layered!

Userland

ntdll

kernel32

Hardware

Other Complicated Stuff

Dragons

© Sven Micklish

• Windows IO is deeply async

• Uses IO Request Packets (IRP)

• “Filter” Drivers can intercept these

“NT Executive”

IO USER GDI

Userland

user32

Hardware

Repressed Memories

Daddy Issues

© Sven Micklish

USER runs the GUI

• Windows, Menus, Cursors, Icons…

“NT Executive”

IO USER GDI

Userland

gdi32

Hardware

Meaning of Life

Unladen Swallows

© Sven Micklish

Graphics Driver Interface

• Basically, it draws stuff

• Moved into kernel space ~NT4

• Bitmaps, Fonts, Metafiles…

“NT Executive”

IO

Drivers

Are

Layered!

Userland

user32 / gdi32

Hardware

Evil Clowns

Broccoli USER GDI

Win32k.sys

Userland

“NT Executive”

IO USER GDI

Drivers

Drivers

Drivers

ntdll / user32 / gdi32 / …

kernel32

Hardware

More Complicated Stuff

Boring / Complicated

(Direct Syscall)

Userland

“NT Executive”

IO USER GDI

Drivers

Drivers

Drivers

ntdll / user32 / gdi32 / …

kernel32

Hardware

More Complicated Stuff

Boring / Complicated

Filter?

Hook?

Hook?

Bug Classes

• LocalLocal
– Privilege escalation

– Sandbox escapes

– Trending upwards in importance

• RemoteRemote
– Used to be the shiznit, now plagued by issues

– Firewalls

– Were great for indiscriminate attacks, less for targeted

• RemoteLocal
– Require a user to do something

– Attack via email, document, URL etc

– Now the Rolls Royce of bugs

Attack Vector Evaluation

• Coming ‘up’ from the hardware side

–Will yield RemoteRemotes

– Just like ‘normal’ network fuzzing

– SMB, RDP, tcpip.sys, wifi, USB…

–Reliability issues? Stealth?

–Hardware differences?

Verdict: You first, guv.?

Attack Vector Evaluation

• SSDT Hooks / Filter Drivers / etc
– Good for attacking 3rd party drivers

– Fuzzing logic itself really should be in-kernel (inflexible)

– Public implementations available

– http://code.google.com/p/ioctlfuzzer

• Finding AV bugs seems too cruel to be sport

• Can’t write drivers in Ruby 

Attack Vector Evaluation

• GDI is cool, because RemoteLocals
– Historically bug prone

• General Syscalls might be fun
– LocalLocals, but easy to prototype

• USER is tricky, only yields LocalLocals
– Keyboard Layouts burned by Stuxnet

– Plus, Tarjei already looked at it

(Moment of Silence in honour of Bug Genocide)

© Sven Micklish

Let’s hit GDI!!

GDI - Delivery Vectors

• Here’s what I have so far
– Fonts - TTF, OTF, FON….

– Cursors - BMP, CUR (animated)

– Metafiles - EMF, WMF

– Images - JPEG, PNG (!!)

• Not even close to complete
– Metafiles cover a lot, though

GDI - Fonts

• Great slides from BHEU12
http://media.blackhat.com/bh-eu-12/Lee/bh-eu-12-Lee-GDI_Font_Fuzzing-Slides.pdf

(MANY THANKS to Lee & Chan for also sharing code)

• Fonts are tricky beasts

• You can also embed them (google EOT)

• Simple 9 step process…

GDI - Fonts

 1. Load the fuzzed font from a file

debug_info "Removing any old copies of #{font_file} "

GDI.RemoveFontResourceEx(font_file, 0, nil) # never know

added=GDI.AddFontResourceEx(font_file, 0, nil)

• I’m NOT using FR_PRIVATE
• Works for almost any font type
• Protip - fix checksums

– (google B1B0AFBA)

GDI - Window Basics

 2. Create a Window Callback

def window_proc(hwnd, umsg, wparam, lparam)

 case umsg

 when GDI::WM_DESTROY

 GDI.PostQuitMessage(0)

 return 0

 else

 # This handles all messages we don't explicitly process

 return GDI.DefWindowProc(hwnd, umsg, wparam, lparam)

 end

 0

end

GDI - Window Basics

• Lots of people put their logic in here
– Handle WM_PAINT, WM_RESIZE etc

– Lots of samples online do it this way, too…

• I never found the need, but YMMV

GDI - Window Basics

 3. Register Window Class

window_class = GDI::WNDCLASSEX.new

window_class[:lpfnWndProc] = method(:window_proc)

window_class[:hInstance] = hinst

window_class[:hbrBackground] = GDI::COLOR_WINDOW

window_class[:hCursor] = 0

@atom = GDI.RegisterClassEx(window_class)

GDI - Window Basics

 4. Create a Window Instance

@hwnd ||= GDI.CreateWindowEx(

 GDI::WS_EX_LEFT, # extended style

 poi(@atom), # class name or atom

 @opts[:title], # window title

 GDI::WS_OVERLAPPEDWINDOW | GDI::WS_VISIBLE, # style

 GDI::CW_USEDEFAULT, # X pos

 GDI::CW_USEDEFAULT, # Y pos

 @opts[:width], # width

 @opts[:height], # height

 0, # parent

 0, # menu

 hinst, # instance

 nil # lparam

)

GDI - Fonts

 5. Get Font Face Name (undocumented)

success=GDI.GetFontResourceInfo(

 w_fname,

 sz,

 buf,

 2 # asks to receive a LOGFONTW in buf

)

lf=LOGFONTW.new buf # cast the buffer to a LOGFONTW

GDI.WideCharToMultiByte(… lf[:lfFaceName].to_ptr …)

GDI - Fonts

 6. “Create” the Font

logical_font = GDI::LOGFONTW.new

logical_font[:lfHeight] = font_size

logical_font[:lfFaceName].to_ptr.put_string(0,font_face)

logical_font[:lfItalic] = 0

logical_font[:lfCharSet] = GDI::DEFAULT_CHARSET

@current_font=GDI.CreateFontIndirect logical_font

raise_win32_error if @current_font.zero?

7. Select it into the DC for our window

@old_font=GDI.SelectObject(dc, @current_font)

© Sven Micklish

What are Device Contexts?

• Bits of screen or printer
• Include “graphics attributes”
• (eg brushes, fonts, etc)

GDI - Fonts

 8. How big is a ‘line’ of text?

build the string one glyph at a time until the

text extent is greater than our rect width

sz = GDI::SIZE.new

until sz[:cx] > width || str.empty?

 out << str.slice!(0,1)

 GDI.GetTextExtentPoint32(dc, out, out.size, sz)

 guess = out.size

end

GDI - Fonts

 9. Actually draw some f**king text

GDI.send(

 text_out_method, # ExtTextOutW / A

 dc, # device context

 0, # X start

 @current_y, # Y start

 GDI::ETO_GLYPH_INDEX, # For ‘raw’ mode

 this_line, # RECT

 out, # str to draw

 out.size, # size

 nil # lpDx

)

@current_y+=sz[:cy]

ETO_GLYPH_INDEX

 “ The lpString array refers to an array returned
from GetCharacterPlacement and should be

parsed directly by GDI as no further language-
specific processing is required. ”

– MSDN

(This is why we use ExtTextOut and not DrawText)

© Sven Micklish

That Sucked!

(Still better than Gtk tho)

DEMO

Image: pavel-petel.tumblr.com - NSFW

GDI - Cursors

hCursor=GDI.LoadCursorFromFile cursor_file

raise_win32_error if hCursor.zero?

@old_cursor=GDI.SetCursor hCursor

debug_info "Set cursor #{cursor_file}”

• WTF? Why no DC?
– The cursor is a shared resource!

– Not supposed to change it unless mouse is over you

– Pff, whatever.

GDI - Cursors

@old_clip = GDI::RECT.new

@clip = GDI::RECT.new

GDI.SetForegroundWindow @hwnd # _try_ to get focus

GDI.GetClipCursor @old_clip

GDI.GetWindowRect @hwnd, @clip

GDI.ClipCursor @clip # Clipping changes it

GDI.ClipCursor @old_clip # Put it back

• Really crappy / fragile method!
– Works, though

DEMO

Image: pavel-petel.tumblr.com - NSFW

© Sven Micklish

Metafiles!

• Like a ‘script’ of GDI commands
• ‘Scalable’ == ‘Fun’
• SetAbortProc used to be lolz

GDI - Metafiles - WMF

if wmf_data[0..3] == "\xD7\xCD\xC6\x9A"

 debug_info “Aldus Placeable Metafile!"

 pdata = pstr(wmf_data[22..-1])

• WMF has no scaling / position data

• APM header is a standard ‘nonstandard’

• Provides the missing info

Cannot the Scaling! What do?

1. Play in MSPAINT.EXE
– Uses GDI+ internally, converts to BMP
– Draws the BMP to the DC

2. Use Coordinate Spaces & Transforms API
– Parse the APM Header
– Do lots of annoying maths with pels and twips
– Actually, just saying ‘pels’ and ‘twips’ is annoying

3. Convert to EMF, play that
– May lose some evil, but very easy to do

GDI - Metafiles - WMF & EMF

emf_handle = GDI.SetWinMetaFileBits(

 pdata.size,

 pdata,

 dc,

 nil

) # convert to EMF if required…

raise_win32_error if emf_handle.zero?

GDI.PlayEnhMetaFile dc, emf_handle, rect

GDI.DeleteEnhMetaFile emf_handle

DEMO
Image: pavel-petel.tumblr.com - NSFW

GDI - JPEG / PNG

The StretchDIBits function copies the color data for a
rectangle of pixels in a DIB, JPEG, or PNG image to the

specified destination rectangle. If the destination rectangle is
larger than the source rectangle, this function stretches the

rows and columns of color data to fit the destination
rectangle. If the destination rectangle is smaller than the
source rectangle, this function compresses the rows and

columns by using the specified raster operation.

- MSDN

GDI - JPEG / PNG

To ensure proper metafile spooling while
printing, applications must call the

CHECKJPEGFORMAT or CHECKPNGFORMAT
escape to verify that the printer recognizes the
JPEG or PNG image, respectively, before calling

StretchDIBits.

- MSDN

Fine. Let’s be a Printer.

1. (Optional) Get default printer

buf=pstr("\x00" * 260)

buf_sz=FFI::MemoryPointer.new(:ulong)

buf_sz.write_ulong buf.size

if GDI.GetDefaultPrinter buf, buf_sz

 buf.read_string buf=pstr("\x00" * 260)

…

(Or just specify “Fax” etc)

Fine. Let’s be a Printer.

2. (Optional) Check for JPEG Support

escape_code=FFI::MemoryPointer.new :ulong

escape_code.write_ulong GDI::CHECKJPEGFORMAT

Check if CHECKJPEGFORMAT exists

res=GDI.ExtEscape(

 printer_dc,

 GDI::QUERYESCSUPPORT,

 escape_code.size,

 escape_code,

 0,

 nil

)

if res > 0

 status=FFI::MemoryPointer.new :ulong

 res=GDI.ExtEscape(

 printer_dc,

 GDI::CHECKJPEGFORMAT,

 p_jpeg_data.size,

 p_jpeg_data,

 status.size,

 status

)

Yes, I realise you can’t read
this….

 Just use one of the built-in
printers like XPS or OneNote,
they support JPEG.

3. Fill Out Bitmap Info Struct

bmi_header = GDI::BITMAPINFOHEADER.new

bmi_header[:biSize] = GDI::BITMAPINFOHEADER.size

bmi_header[:biWidth] = img_width

top down image - negative height value

bmi_header[:biHeight] = -img_height

bmi_header[:biPlanes] = 1

bmi_header[:biBitCount] = 0

bmi_header[:biCompression] = GDI::BI_JPEG

bmi_header[:biSizeImage] = img_data.bytesize

4. Do the Thing
printer_dc=GDI.CreateDC nil, lpszDevice, nil, nil

retval=GDI.StretchDIBits(

 printer_dc,

 0, # dest X

 0, # dest Y

 stretch_width || rand(1000), # width

 stretch_height || rand(1000), # height

 0, # src X

 0, # src Y

 img_width,

 img_height,

 pstr(img_data),

 bmi_header,

 GDI::DIB_RGB_COLORS, GDI::SRCCOPY

)

If this returns > 0 then it is “scan
lines copied”, which should be the
same as your JPEG height. Yay.

NO DEMO

Image: pavel-petel.tumblr.com - NSFW

One More Thing…
first 4 args are passed in registers.

register_args=args.shift(4).zip %w(rcx rdx r8 r9)

register_args.map! {|arg,reg| "mov #{reg}, #{arg}" }

the rest are passed on the stack

stack_args=args.reverse.map {|arg| "push #{arg}"}

stub_x64=[

 "mov r10, rcx", # don't know why

 "mov eax, #{syscall}", # syscall in eax

 "syscall", # make the call

 "add rsp, #{stack_args.size * 8}", # clean up the stack

 "ret"

]

asm = (register_args + stack_args + stub_x64).join "\n"

opcodes = Metasm::Shellcode.assemble(

 Metasm::X86_64.new, asm

).encode_string

p_opcodes = FFI::MemoryPointer.from_string opcodes

One More Thing…
Syscall.VirtualProtect(

 p_opcodes,

 p_opcodes.size,

 PAGE_EXECUTE_READWRITE,

 FFI::MemoryPointer.new(DWORD) # receives old protection value

)

hThread = Syscall.CreateThread(

 nil,

 0,

 p_opcodes,

 nil,

 CREATE_SUSPENDED,

 nil

)

self.raise_win32_error if hThread.zero?

Syscall.CloseHandle hThread

1 Line Syscall Fuzzer!

Syscall.call64

rand(0x2000),

*(Array.new(6).map {rand

2**32}) until @bsod

Basic technique stolen from jduck’s MS10-073 exploit,
updated to work on x86 / x64. Props to the Metasm team.

Out of time!!
• Did not talk about…

• Case Generation
– I mainly use ‘Millerfuzz’ & Radamsa from OUSPUG

– (and secret stuff)

• Scale
– Scaling by VM pairs has proved fragile

– I use ‘checkpoints’ with auto-reboot on BSOD

– You can test with NotMyFault tool

– Any uncleared dump + checkpoint sent for analysis

– VMs don’t always reboot cleanly 

– Private WER server may be better?

kthxbai

• As I mentioned, 5 weeks ago I

knew ~nothing about the kernel

• Anything I got right is

probably thanks to:
– Lee & Chan for their code from BHEU12

– Tarjei Mandt, Alex Ionescu, jduck

– New MSDN Nagivation Interface

– Luck

</talk>

(ben at coseinc dot com)

